Note on the spectra of some sequences of regular graphs

Dao Chen Yuan

Fall 2021

Abstract

Kollár and Sarnak [4] have investigated the spectral set of sequences of 3-regular graphs, using in particular the map from a graph to the line graph of its subdivision (so-called vertex replacement map in this note). We generalize this map and some results of the paper to k-regular graphs.

I would like to thank Prof. Dmitry Jakobson¹ and Prof. Sergey Norin¹, my research supervisors, for their help and advice.

1 The vertex replacement map

Let \mathcal{F}_k be the set of k-regular (simple, undirected) graphs ($k \ge 2$ across this section). For a given k we will define a map from \mathcal{F}_k onto itself that will help us generate k-regular graphs, via vertex replacement. This map has been investigated by Kollár and Sarnak in [3] and [4] for 3-regular graphs.

Definition 1.1. Let G be a graph. $D(G) = D_G$ (called the subdivision graph of G) is defined to be the graph created from subdividing every edge in E(G). Formally, $V(D_G) = E(G) \cup V(G)$ and $E(D_G) = \{(e, v) : e \in E(G), v \in V(G), e \text{ incident to } v\}$.

Remark. For $x \in V(D_G)$, if $x \in V(G)$ then $\deg_{D_G}(x) = \deg_G(x)$ and if $x \in E(G)$ then $\deg_G(x) = 2$.

Definition 1.2. Let G be a graph. $L(G) = L_G$ the line graph of G is defined where $V(L_G) = E(G)$ and $(e, f) \in E(L_G)$ if and only if e, f are incident to the same vertex in G.

Lemma 1.3. For each $v \in V(G)$, if it is incident to $e_1, \ldots, e_d \in E(G)$, then we can identify it with $H_v \subseteq L_G$, where $V(H_v)$ is the induced subgraph of $\{e_1, \ldots, e_d\}$, H_v is isomorphic to K_d and $H_v \cap H_u \neq \emptyset$ if and only if $(u, v) \in E(G)$, in which case $H_v \cap H_u = \{(u, v)\}$.

Proof. H_v is isomorphic to K_d since every $e, f \in V(H_v)$ are neighbours (they are all incident to v). The intersection property follows $V(H_v \cap H_u) = V(H_v) \cap V(H_u)$.

¹Department of Mathematics and Statistics, McGill University

Lemma 1.4. For $e = (v, u) \in V(L_G)$ (where $v, u \in V(G)$ were neighbours in G), $\deg_{L_G}(e) = \deg_G(v) + \deg_G(u) - 2$.

Proof. e is only neighbours with $f \in E(G)$ where $f \neq e$ incident to v or to u, and there are $\deg_G(v) + \deg_G(u) - 2$ of those.

Proposition 1.5. Let $G \in \mathcal{F}_k$ be k-regular.

$$\phi: \mathcal{F}_k \to \mathcal{F}_k, G \mapsto L(D(G))$$

is a mapping where every $v \in V(G)$ can be identified to $H_v \subseteq \phi(G)$ whose vertex set are edges incident to vin G. H_v is isomorphic to K_k and H_v is joined by an edge to H_u if and only if $(u, v) \in E(G)$.

Remark. ϕ indeed maps into \mathcal{F}_k by 1.4, since every $e \in E(D_G)$ joins a vertex of degree k (from V(G)) and one of degree 2 (from $E(G) \subseteq V(D_G)$). So $e \in V(\phi(G))$ would have degree k + 2 - 2 = k. We call ϕ the vertex replacement map.

Proof. Since $V(G) \subseteq V(D(G))$ and the degrees stay unchanged, we use H_v from 1.3 to get that they are isomorphic to K_k and that they share a vertex with each of H_e , where $e \in E(G)$ was added by the subdivisions and e is incident to v and some u neighbour of v. But this means H_e also shares a vertex with H_u (and $H_u \cap H_v = \emptyset$ since $u, v \in V(G)$ can never be neighbours in D_G), which means H_v shares an edge with H_u .

By the degree of every $x \in V(H_v)$, since they have k-1 degrees inside H_v , they must have precisely one degree out of H_v , hence the only if.

2 The spectral properties of the vertex replacement map

In this section, we establish a relationship between Spec G and Spec $\phi(G)$, via the characteristic polynomials of G and $\phi(G)$ (the characteristic polynomial of G is defined to be $\chi_G = \chi_{\mathbf{A}(G)}$, where $\mathbf{A}(G)$ is the adjacency matrix of G). The algebraic graph theory results of this section are due to Cvetković et al. [2].

We start with a representation of the adjacency matrix of D_G .

Lemma 2.1. Let G have n vertices and ℓ edges. Let $\mathbf{X}_{n \times \ell} = \mathbf{X}(G)$ be the undirected incidence matrix of G $(\mathbf{X}_{ve} = 1 \text{ if and only if } e \text{ incident to } v)$. Then we can write

$$\mathbf{A}(D_G) = \begin{pmatrix} 0_{\ell \times \ell} & \mathbf{X}(G)^{\mathsf{T}} \\ \mathbf{X}(G) & 0_{n \times n} \end{pmatrix}.$$

Proof. The first ℓ rows and columns of $\mathbf{A}(D_G)$ represent E(G) and the following n represent V(G). $\mathbf{A}_{ij} = 0$ if $i, j \in V(G)$ or $i, j \in E(G)$ and $\mathbf{A}_{ij} = 1$ if and only if $\mathbf{X}(G)_{ij} = 1$ (if $i \in V(G)$ and $j \in E(G)$) or $\mathbf{X}(G)_{ji} = 1$ (if $i \in E(G)$ and $j \in V(G)$).

Now we state and prove two well-known results in matrix theory.

Lemma 2.2. If \mathbf{M} is invertible and \mathbf{T} is square,

$$det \begin{pmatrix} \mathbf{M} & \mathbf{X} \\ \mathbf{Y} & \mathbf{T} \end{pmatrix} = det \mathbf{M} det (\mathbf{T} - \mathbf{Y} \mathbf{M}^{-1} \mathbf{X}).$$

Proof. Note (assume $\mathbf{M}_{\ell \times \ell}$ and $\mathbf{T}_{n \times n}$)

$$\begin{pmatrix} \mathbf{M}^{-1} & 0_{\ell \times n} \\ 0_{n \times \ell} & \mathbf{I}_n \end{pmatrix} \begin{pmatrix} \mathbf{I}_{\ell} & -\mathbf{X} \\ 0_{n \times \ell} & \mathbf{I}_n \end{pmatrix} = \begin{pmatrix} \mathbf{M}^{-1} & -\mathbf{M}^{-1}\mathbf{X} \\ 0_{n \times \ell} & \mathbf{I}_n \end{pmatrix}$$

is precisely the product of column operations that eliminate \mathbf{M} and \mathbf{X} . Then

$$\begin{pmatrix} \mathbf{M} & \mathbf{X} \\ \mathbf{Y} & \mathbf{T} \end{pmatrix} \begin{pmatrix} \mathbf{M}^{-1} & -\mathbf{M}^{-1}\mathbf{X} \\ \mathbf{0}_{n \times \ell} & \mathbf{I}_n \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{\ell} & \mathbf{0}_{\ell \times n} \\ \mathbf{Y}\mathbf{M}^{-1} & \mathbf{T} - \mathbf{Y}\mathbf{M}^{-1}\mathbf{X} \end{pmatrix}$$
$$\implies \det \begin{pmatrix} \mathbf{M} & \mathbf{X} \\ \mathbf{Y} & \mathbf{T} \end{pmatrix} (\det \mathbf{M})^{-1} = \det(\mathbf{T} - \mathbf{Y}\mathbf{M}^{-1}\mathbf{X}).$$

Lemma 2.3. If $\mathbf{X}_{m \times n}$, $\mathbf{Y}_{n \times m}$ are matrices and $\chi_{\mathbf{A}}$ denotes the characteristic polynomial of a square matrix \mathbf{A} , then

$$\lambda^n \chi_{\mathbf{X}\mathbf{Y}}(\lambda) = \lambda^m \chi_{\mathbf{Y}\mathbf{X}}(\lambda).$$

Proof. We start by the case where \mathbf{X}, \mathbf{Y} are $n \times n$, and \mathbf{X} is invertible. Then

$$\mathbf{X}(\mathbf{Y}\mathbf{X})\mathbf{X}^{-1} = \mathbf{X}\mathbf{Y} \implies \det(\lambda\mathbf{I}_n - \mathbf{X}\mathbf{Y}) = \det(\mathbf{X}(\lambda\mathbf{I}_n - \mathbf{Y}\mathbf{X})\mathbf{X}^{-1}) = \det(\lambda\mathbf{I}_n - \mathbf{Y}\mathbf{X}).$$

For arbitrary $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n^2}$, given fixed $\lambda \in \mathbb{R}$, if we consider

$$\psi_{\lambda}: \mathbb{R}^{n^2} \times \mathbb{R}^{n^2} \to \mathbb{R}, (\mathbf{X}, \mathbf{Y}) \mapsto \chi_{\mathbf{X}\mathbf{Y}}(\lambda); \ \phi_{\lambda}: \mathbb{R}^{n^2} \times \mathbb{R}^{n^2} \to \mathbb{R}, (\mathbf{X}, \mathbf{Y}) \mapsto \chi_{\mathbf{Y}\mathbf{X}}(\lambda)$$

then $\psi_{\lambda} = \phi_{\lambda}$ infinitely often (wherever one of **X**, **Y** is invertible), so since ψ_{λ} and ϕ_{λ} are polynomials, $\psi_{\lambda} = \phi_{\lambda}$ everywhere. Thus $\chi_{\mathbf{X}\mathbf{Y}} = \chi_{\mathbf{Y}\mathbf{X}}$ whenever **X**, **Y** are square.

Given n > m, we write

$$\mathbf{X}_{n \times n}' = \begin{pmatrix} \mathbf{X}_{m \times n} \\ \mathbf{0}_{(n-m) \times n} \end{pmatrix}, \mathbf{Y}_{n \times n}' = \begin{pmatrix} \mathbf{Y}_{n \times m} & \mathbf{0}_{n \times (n-m)} \end{pmatrix}$$

Then

$$\begin{aligned} \mathbf{X}'\mathbf{Y}' &= \begin{pmatrix} \mathbf{X} \\ 0_{(n-m)\times n} \end{pmatrix} \begin{pmatrix} \mathbf{Y} & 0_{n\times(n-m)} \end{pmatrix} = \begin{pmatrix} \mathbf{X}\mathbf{Y} & 0_{m\times(n-m)} \\ 0_{(n-m)\times m} & 0_{(n-m)\times(n-m)} \end{pmatrix}; \\ \mathbf{Y}'\mathbf{X}' &= \begin{pmatrix} \mathbf{Y} & 0_{n\times(n-m)} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ 0_{(n-m)\times n} \end{pmatrix} = \mathbf{Y}\mathbf{X} \\ \implies \chi_{\mathbf{X}'\mathbf{Y}'}(\lambda) &= \det \begin{pmatrix} \lambda \mathbf{I}_m - \mathbf{X}\mathbf{Y} & 0_{m\times(n-m)} \\ 0_{(n-m)\times m} & \lambda \mathbf{I}_{n-m} \end{pmatrix} = \lambda^{n-m}\chi_{\mathbf{X}\mathbf{Y}}(\lambda) = \chi_{\mathbf{Y}'\mathbf{X}'}(\lambda) = \chi_{\mathbf{Y}\mathbf{X}}(\lambda). \end{aligned}$$

We need one last lemma relating χ_G and $\chi_{L(G)}$.

Lemma 2.4. Let G be a graph with n vertices, ℓ edges, degree matrix **D** and adjacency matrix **A**. Then

$$\chi_{L_G}(\lambda - 2) = \lambda^{\ell - n} \det(\lambda \mathbf{I}_n - \mathbf{A} - \mathbf{D}).$$

Proof. Note $\mathbf{A}(L_G) + 2\mathbf{I}_{\ell} = \mathbf{X}(G)^{\mathsf{T}}\mathbf{X}(G)$. Indeed for $i \neq j$, $\mathbf{A}(L_G)_{ij} = 1$ if and only if i and j are incident to the same vertex, which is precisely when the *i*-th and *j*-th columns of $\mathbf{X}(G)$ have a 1 at the same position. For i = j, the *i*-th column of $\mathbf{X}(G)$ always has precisely two 1s, so $(\mathbf{X}(G)^{\mathsf{T}}\mathbf{X}(G))_{ii} = 2$. This implies

$$\chi_{L_G}(\lambda - 2) = \det(\lambda \mathbf{I}_{\ell} - 2\mathbf{I}_{\ell} - \mathbf{A}(L_G)) = \chi_{\mathbf{X}(G)^{\mathsf{T}}\mathbf{X}(G)}(\lambda).$$

On the other hand $\mathbf{X}(G)\mathbf{X}(G)^{\mathsf{T}} = \mathbf{A} + \mathbf{D}$. Indeed for $i \neq j$, $\mathbf{A}_{ij} = 1$ if and only if i and j are incident to the same edge, which is when i is adjacent to j. If i = j then $(\mathbf{X}(G)\mathbf{X}(G))_{ii} = \deg(i) = \mathbf{D}_{ii}$. The result then follows from 2.3:

$$\chi_{L_G}(\lambda-2) = \chi_{\mathbf{X}(G)^{\intercal}\mathbf{X}(G)}(\lambda) = \lambda^{\ell-n}\chi_{\mathbf{X}(G)\mathbf{X}(G)^{\intercal}}(\lambda) = \lambda^{\ell-n}\chi_{\mathbf{A}+\mathbf{D}}(\lambda) = \lambda^{\ell-n}\det(\lambda\mathbf{I}_n - \mathbf{A} - \mathbf{D}).$$

Now we establish the main result between χ_G and $\chi_{\phi(G)}$.

Theorem 2.5. Let $G \in \mathcal{F}_k$ have n vertices and $\ell = nk/2$ edges. Then

$$\chi_{\phi(G)}(\lambda) = (\lambda(\lambda+2))^{\ell-n} \chi_G(\lambda^2 + (2-k)\lambda - k).$$

Proof. Recall

$$\mathbf{A}(D_G) = \begin{pmatrix} 0_{\ell \times \ell} & \mathbf{X}(G)^{\mathsf{T}} \\ \mathbf{X}(G) & 0_{n \times n} \end{pmatrix}, \ \mathbf{D}(D_G) = \begin{pmatrix} 2\mathbf{I}_{\ell} & 0_{\ell \times n} \\ 0_{n \times \ell} & k\mathbf{I}_n \end{pmatrix}.$$

By 2.4

$$\chi_{\phi(G)}(\lambda) = (\lambda+2)^{\ell-n} \det((\lambda+2)\mathbf{I}_{\ell+n} - \mathbf{A}(D_G) - \mathbf{D}(D_G)).$$

We note that if we write (using 2.1)

$$\mathbf{A}(D_G) = \begin{pmatrix} 0_{\ell \times \ell} & \mathbf{X}(G)^{\mathsf{T}} \\ \mathbf{X}(G) & 0_{n \times n} \end{pmatrix}$$

then (recall Section 1: $\deg_{D_G}(v)=2$ if $v\in E(G),\,k$ if $v\in V(G))$

$$\mathbf{D}(D_G) = \begin{pmatrix} 2\mathbf{I}_\ell & 0_{\ell \times n} \\ 0_{n \times \ell} & k\mathbf{I}_n \end{pmatrix}.$$

Then by 2.2

$$\begin{aligned} (\lambda+2)\mathbf{I}_{\ell+n} - \mathbf{A}(D_G) - \mathbf{D}(D_G) &= \begin{pmatrix} (\lambda+2-2)\mathbf{I}_{\ell} & -\mathbf{X}(G)^{\mathsf{T}} \\ -\mathbf{X}(G) & (\lambda+2-k)\mathbf{I}_n \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{I}_{\ell} & -\mathbf{X}(G)^{\mathsf{T}} \\ -\mathbf{X}(G) & (\lambda-k+2)\mathbf{I}_n \end{pmatrix} \\ \implies \det \begin{pmatrix} \lambda \mathbf{I}_{\ell} & -\mathbf{X}(G)^{\mathsf{T}} \\ -\mathbf{X}(G) & (\lambda-k+2)\mathbf{I}_n \end{pmatrix} &= \lambda^{\ell} \det((\lambda-k+2)\mathbf{I}_n - \lambda^{-1}\mathbf{X}(G)\mathbf{X}(G)^{\mathsf{T}}) \\ &= \lambda^{\ell-n} \det((\lambda(\lambda-k+2)-k)\mathbf{I}_n - \mathbf{A}(G)) = \lambda^{\ell-n}\chi_G(\lambda(\lambda-k+2)-k) \\ \implies \chi_{\phi(G)}(\lambda) &= (\lambda(\lambda+2))^{\ell-n}\chi_G(\lambda(\lambda-k+2)-k). \end{aligned}$$

Corollary 2.6. Let $G \in \mathcal{F}_k$ have n vertices and $\ell = nk/2$ edges and let $f(\lambda) = \lambda^2 + (2-k)\lambda - k$. Then

Spec
$$\phi(G) = \{0\}^{(\ell-n)} \cup \{-2\}^{(\ell-n)} \cup f^{-1}(\operatorname{Spec} G).$$

where $\operatorname{Spec} G$ and $\operatorname{Spec} \phi(G)$ are understood to be multisets (and $\{x\}^{(\ell-n)}$ denotes the multiset with x having multiplicity $\ell - n$).

Proof. Everything follows 2.5: if $\lambda = 0$ or -2 then $\chi_{\phi(G)}(\lambda) = 0$; If $\lambda \in f^{-1}(\operatorname{Spec} G)$ then $f(\lambda) \in \operatorname{Spec} G$ so $\chi_G(f(\lambda)) = 0$ so $\chi_{\phi(G)}(\lambda) = 0$. The multiplicities follow from the multiplicity of λ as a root of $\chi_{\phi(G)}$.

3 Spectrum of a sequence of vertex replacement graphs

Kollár and Sarnak [4] found a set A such that for $G \in \mathcal{F}_3$, if $\operatorname{Spec} G \subseteq A$ then $\operatorname{Spec} \phi(G) \subseteq A$. This means that $[-3,3] \setminus A$ is guaranteed to be gapped by the spectrum of $\{\phi^n(G) : n \geq 0\}$, if $\operatorname{Spec} G \subseteq A$. We will do the same for $G \in \mathcal{F}_k$.

We use the notation

$$f(\lambda) = f_k(\lambda) = \lambda^2 + (2-k)\lambda - k$$

and

$$\Gamma = \Gamma_k = \bigcap_{j=0}^{\infty} f_k^{-j}([-k,k]).$$

We are looking for a set $A = A_k \subseteq [-k, k]$ such that

$$\operatorname{Spec} G \subseteq A_k \implies \operatorname{Spec} \phi(G) = f_k^{-1}(\operatorname{Spec} G) \cup \{0, 2\} \subseteq A_k.$$

$$(3.1)$$

Note that if $f_k^{-j}(A_k \cup \{0, -2\}) \subseteq A_k, \forall j \ge 0$ then A_k would satisfy (3.1). We will proceed to show that $A_k = \Gamma_k \cup \bigcup_{j=0}^{\infty} f_k^{-j}(\{0\})$ has the desired property.

Lemma 3.1. Suppose $x \notin [-k,k]$. Then $f_k(x) \notin [-k,k]$. In consequence, $x \notin \Gamma_k$ and $f_k^j(x) \neq 0, \forall j \ge 0$.

Proof. Assume x > k i.e. $x = k + \epsilon$. Then

$$f_k(x) = (k+\epsilon)^2 + (2-k)(k+\epsilon) - k = (k+\epsilon)(\epsilon+2) - k > (k+\epsilon)(\epsilon+2) - k - \epsilon = (k+\epsilon)(\epsilon+1) > k.$$

Now assume x < -k i.e. $x = -k - \epsilon$. Then (recall $k \ge 2$ so $2k - 3 \ge 1$)

$$f_k(x) = (-k - \epsilon)^2 + (k - 2)(k + \epsilon) - k > (k + \epsilon)(k + \epsilon + k - 2) - k - \epsilon = (k + \epsilon)(2k + \epsilon - 3) > k. \quad \Box$$

Theorem 3.2. Fix $k \ge 2$. Let $A = \Gamma \cup \bigcup_{j=0}^{\infty} f^{-j}(\{0\})$. Then $f^{-j}(A \cup \{0, -2\}) \subseteq A \subseteq [-k, k], \forall j \ge 0$. In other words, A satisfies (3.1)

Proof. $\Gamma \subseteq [-k,k]$ and by 3.1 $\bigcup_{j=0}^{\infty} f_k^{-j}(\{0\}) \subseteq [-k,k]$ so $A \subseteq [-k,k]$. Note

$$f^{-j}(A \cup \{0, -2\}) = f^{-j}(\Gamma \cup \{-2\}) \cup \bigcup_{i=0}^{\infty} f^{-(i+j)}(\{0\}), \, \forall j \ge 0.$$

Clearly $\bigcup_{i=0}^{\infty} f^{-(i+j)}(\{0\}) \subseteq A$ by definition. Furthermore, $f(-2) = (-2)^2 + (2-k)(-2) - k = k$ and $f^2(-2) = f(k) = k^2 + (2-k)k - k = k$ so $f^j(-2) \in [-k,k]$ for all $j \ge 0$ so $-2 \in f^{-j}([-k,k]), \forall j \ge 0$ i.e. $-2 \in \Gamma$ so $\Gamma \cup \{-2\} = \Gamma$. Thus we will be done if we can show that $f^{-j}(\Gamma) \subseteq \Gamma, \forall j \ge 0$.

Via induction this is equivalent to saying that $f^{-1}(\Gamma) \subseteq \Gamma$. If $x \in f^{-1}(\Gamma_k)$ then $f(x) \in \Gamma$ so by definition

$$\forall j \ge 0 : f(x) \in f^{-j}([-k,k]) \implies x \in f^{-(j+1)}([-k,k])$$

Now we only need $x \in f^{-0}([-k,k]) = [-k,k]$, but this follows 3.1: $x \notin [-k,k] \implies f(x) \notin \Gamma$. Thus we have shown $x \in \Gamma$.

What we showed is that suppose we are given $G \in \mathcal{F}_k$ such that $\operatorname{Spec} G \subseteq A_k$, then for the sequence $\{G_j = \phi^j(G) : j \ge 0\}$, $\operatorname{Spec} G_j \subseteq A_k$, $\forall j \ge 0$.

A natural question now is the following: which points are known to be in A_k ?

Proposition 3.3. Fix $k \ge 2$. Then $\bigcup_{i=0}^{\infty} f^{-i}(\{-1, 0, k\}) \subseteq A$.

Proof. $\bigcup_{j=0}^{\infty} f^{-j}(\{0\}) \subseteq A$ is by definition. Note f(-1) = 1 - 2 + k - k = -1 and (recall) f(k) = k. Thus for any x, if there exists $j \ge 0$ such that $f^j(x) \in \{-1, k\}$, then $f^{i+j}(x) \in \{-1, k\}$ for all $i \ge 0$ and furthermore $f^i(x) \in [-k, k]$ for all $i = 0, \ldots, j$ by 3.1. This means $x \in \Gamma \subseteq A$.

We now show some examples where (3.1) can be applied via 3.3. The graphs used in the following examples were investigated in Biggs [1].

Example 3.4. We know (this can be shown by the fact that $A(K_{k+1})$ is circulant)

Spec
$$K_{k+1} = \{k\}^{(1)} \cup \{-1\}^{(k)}$$
.

So let $G = K_{k+1}$. Then $\{G_j = \phi^j(G) : j \ge 0\}$ has Spec $G_j \subseteq A_k, \forall j \ge 0$.

Example 3.5. Define H_s to be the graph on 2s vertices obtained by removing s disjoint edges (i.e. a perfect matching) from K_{2s} . H_s is called a hyperoctahedral graph and H_3 is the octahedral graph. Note $H_s \in \mathcal{F}_{2(s-1)}$. Again via the fact that $\mathbf{A}(H_s)$ is circulant, we know

Spec
$$H_s = \{2(s-1)\}^{(1)}\{0\}^{(s)}\{-2\}^{(s-1)}$$
.

Recall $-2 \in f_k^{-1}(\{k\})$ for any $k \ge 2$. Thus for $s \ge 2$, if we let $G = H_s$ then $\{G_j = \phi^j(G) : j \ge 0\}$ has $\operatorname{Spec} G_j \subseteq A_{2(s-1)}, \forall j \ge 0$.

References

- [1] Norman Biggs. *Regular graphs and line graphs*. Cambridge Mathematical Library. Cambridge University Press, 2nd edition, 1974.
- [2] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application. Pure and applied mathematics : a series of monographs and textbooks. Academic Press, 1980.

- [3] Alicia J. Kollár, Mattias Fitzpatrick, Peter Sarnak, and Andrew A. Houck. Line-graph lattices: Euclidean and non-euclidean flat bands, and implementations in circuit quantum electrodynamics. *Communications* in Mathematical Physics, 376(3):1909–1956, Dec 2019.
- [4] Alicia J. Kollár and Peter Sarnak. Gap sets for the spectra of cubic graphs, 2021.