Note on the spectra of some sequences of regular graphs

Dao Chen Yuan

Fall 2021

Abstract

Kollár and Sarnak [4] have investigated the spectral set of sequences of 3-regular graphs, using in particular the map from a graph to the line graph of its subdivision (so-called vertex replacement map in this note). We generalize this map and some results of the paper to k-regular graphs.

I would like to thank Prof. Dmitry Jakobson ${ }^{1}$ and Prof. Sergey Norin ${ }^{1}$, my research supervisors, for their help and advice.

1 The vertex replacement map

Let \mathcal{F}_{k} be the set of k-regular (simple, undirected) graphs ($k \geq 2$ across this section). For a given k we will define a map from \mathcal{F}_{k} onto itself that will help us generate k-regular graphs, via vertex replacement. This map has been investigated by Kollár and Sarnak in [3] and [4] for 3-regular graphs.

Definition 1.1. Let G be a graph. $D(G)=D_{G}$ (called the subdivision graph of G) is defined to be the graph created from subdividing every edge in $E(G)$. Formally, $V\left(D_{G}\right)=E(G) \cup V(G)$ and $E\left(D_{G}\right)=\{(e, v)$: $e \in E(G), v \in V(G), e$ incident to $v\}$.

Remark. For $x \in V\left(D_{G}\right)$, if $x \in V(G)$ then $\operatorname{deg}_{D_{G}}(x)=\operatorname{deg}_{G}(x)$ and if $x \in E(G)$ then $\operatorname{deg}_{G}(x)=2$.

Definition 1.2. Let G be a graph. $L(G)=L_{G}$ the line graph of G is defined where $V\left(L_{G}\right)=E(G)$ and $(e, f) \in E\left(L_{G}\right)$ if and only if e, f are incident to the same vertex in G.

Lemma 1.3. For each $v \in V(G)$, if it is incident to $e_{1}, \ldots, e_{d} \in E(G)$, then we can identify it with $H_{v} \subseteq L_{G}$, where $V\left(H_{v}\right)$ is the induced subgraph of $\left\{e_{1}, \ldots, e_{d}\right\}, H_{v}$ is isomorphic to K_{d} and $H_{v} \cap H_{u} \neq \varnothing$ if and only if $(u, v) \in E(G)$, in which case $H_{v} \cap H_{u}=\{(u, v)\}$.

Proof. H_{v} is isomorphic to K_{d} since every $e, f \in V\left(H_{v}\right)$ are neighbours (they are all incident to v). The intersection property follows $V\left(H_{v} \cap H_{u}\right)=V\left(H_{v}\right) \cap V\left(H_{u}\right)$.

[^0]Lemma 1.4. For $e=(v, u) \in V\left(L_{G}\right)$ (where $v, u \in V(G)$ were neighbours in $\left.G\right)$, $\operatorname{deg}_{L_{G}}(e)=\operatorname{deg}_{G}(v)+$ $\operatorname{deg}_{G}(u)-2$.

Proof. e is only neighbours with $f \in E(G)$ where $f \neq e$ incident to v or to u, and there are $\operatorname{deg}_{G}(v)+$ $\operatorname{deg}_{G}(u)-2$ of those.

Proposition 1.5. Let $G \in \mathcal{F}_{k}$ be k-regular.

$$
\phi: \mathcal{F}_{k} \rightarrow \mathcal{F}_{k}, G \mapsto L(D(G))
$$

is a mapping where every $v \in V(G)$ can be identified to $H_{v} \subseteq \phi(G)$ whose vertex set are edges incident to v in $G . H_{v}$ is isomorphic to K_{k} and H_{v} is joined by an edge to H_{u} if and only if $(u, v) \in E(G)$.

Remark. ϕ indeed maps into \mathcal{F}_{k} by 1.4, since every $e \in E\left(D_{G}\right)$ joins a vertex of degree k (from $V(G)$) and one of degree $2\left(\right.$ from $\left.E(G) \subseteq V\left(D_{G}\right)\right)$. So $e \in V(\phi(G))$ would have degree $k+2-2=k$. We call ϕ the vertex replacement map.

Proof. Since $V(G) \subseteq V(D(G))$ and the degrees stay unchanged, we use H_{v} from 1.3 to get that they are isomorphic to K_{k} and that they share a vertex with each of H_{e}, where $e \in E(G)$ was added by the subdivisions and e is incident to v and some u neighbour of v. But this means H_{e} also shares a vertex with H_{u} (and $H_{u} \cap H_{v}=\varnothing$ since $u, v \in V(G)$ can never be neighbours in D_{G}), which means H_{v} shares an edge with H_{u}.

By the degree of every $x \in V\left(H_{v}\right)$, since they have $k-1$ degrees inside H_{v}, they must have precisely one degree out of H_{v}, hence the only if.

2 The spectral properties of the vertex replacement map

In this section, we establish a relationship between $\operatorname{Spec} G$ and $\operatorname{Spec} \phi(G)$, via the characteristic polynomials of G and $\phi(G)$ (the characteristic polynomial of G is defined to be $\chi_{G}=\chi_{\mathbf{A}(G)}$, where $\mathbf{A}(G)$ is the adjacency matrix of $G)$. The algebraic graph theory results of this section are due to Cvetković et al. [2].

We start with a representation of the adjacency matrix of D_{G}.

Lemma 2.1. Let G have n vertices and ℓ edges. Let $\mathbf{X}_{n \times \ell}=\mathbf{X}(G)$ be the undirected incidence matrix of G $\left(\mathbf{X}_{v e}=1\right.$ if and only if e incident to $\left.v\right)$. Then we can write

$$
\mathbf{A}\left(D_{G}\right)=\left(\begin{array}{cc}
0_{\ell \times \ell} & \mathbf{X}(G)^{\top} \\
\mathbf{X}(G) & 0_{n \times n}
\end{array}\right)
$$

Proof. The first ℓ rows and columns of $\mathbf{A}\left(D_{G}\right)$ represent $E(G)$ and the following n represent $V(G) . \mathbf{A}_{i j}=0$ if $i, j \in V(G)$ or $i, j \in E(G)$ and $\mathbf{A}_{i j}=1$ if and only if $\mathbf{X}(G)_{i j}=1$ (if $i \in V(G)$ and $\left.j \in E(G)\right)$ or $\mathbf{X}(G)_{j i}=1$ (if $i \in E(G)$ and $j \in V(G)$).

Now we state and prove two well-known results in matrix theory.

Lemma 2.2. If \mathbf{M} is invertible and \mathbf{T} is square,

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbf{M} & \mathbf{X} \\
\mathbf{Y} & \mathbf{T}
\end{array}\right)=\operatorname{det} \mathbf{M} \operatorname{det}\left(\mathbf{T}-\mathbf{Y M}^{-1} \mathbf{X}\right)
$$

Proof. Note (assume $\mathbf{M}_{\ell \times \ell}$ and $\mathbf{T}_{n \times n}$)

$$
\left(\begin{array}{cc}
\mathbf{M}^{-1} & 0_{\ell \times n} \\
0_{n \times \ell} & \mathbf{I}_{n}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I}_{\ell} & -\mathbf{X} \\
0_{n \times \ell} & \mathbf{I}_{n}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{M}^{-1} & -\mathbf{M}^{-1} \mathbf{X} \\
0_{n \times \ell} & \mathbf{I}_{n}
\end{array}\right)
$$

is precisely the product of column operations that eliminate \mathbf{M} and \mathbf{X}. Then

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathbf{M} & \mathbf{X} \\
\mathbf{Y} & \mathbf{T}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{M}^{-1} & -\mathbf{M}^{-1} \mathbf{X} \\
0_{n \times \ell} & \mathbf{I}_{n}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{I}_{\ell} & 0_{\ell \times n} \\
\mathbf{Y M}^{-1} & \mathbf{T}-\mathbf{Y M}^{-1} \mathbf{X}
\end{array}\right) \\
\Longrightarrow & \operatorname{det}\left(\begin{array}{ll}
\mathbf{M} & \mathbf{X} \\
\mathbf{Y} & \mathbf{T}
\end{array}\right)(\operatorname{det} \mathbf{M})^{-1}=\operatorname{det}\left(\mathbf{T}-\mathbf{Y} \mathbf{M}^{-1} \mathbf{X}\right) .
\end{aligned}
$$

Lemma 2.3. If $\mathbf{X}_{m \times n}, \mathbf{Y}_{n \times m}$ are matrices and $\chi_{\mathbf{A}}$ denotes the characteristic polynomial of a square matrix A, then

$$
\lambda^{n} \chi_{\mathbf{X} \mathbf{Y}}(\lambda)=\lambda^{m} \chi_{\mathbf{Y} \mathbf{X}}(\lambda)
$$

Proof. We start by the case where \mathbf{X}, \mathbf{Y} are $n \times n$, and \mathbf{X} is invertible. Then

$$
\mathbf{X}(\mathbf{Y X}) \mathbf{X}^{-1}=\mathbf{X} \mathbf{Y} \Longrightarrow \operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{X} \mathbf{Y}\right)=\operatorname{det}\left(\mathbf{X}\left(\lambda \mathbf{I}_{n}-\mathbf{Y X}\right) \mathbf{X}^{-1}\right)=\operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{Y} \mathbf{X}\right)
$$

For arbitrary $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n^{2}}$, given fixed $\lambda \in \mathbb{R}$, if we consider

$$
\psi_{\lambda}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R},(\mathbf{X}, \mathbf{Y}) \mapsto \chi_{\mathbf{X Y}}(\lambda) ; \phi_{\lambda}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R},(\mathbf{X}, \mathbf{Y}) \mapsto \chi_{\mathbf{Y X}}(\lambda)
$$

then $\psi_{\lambda}=\phi_{\lambda}$ infinitely often (wherever one of \mathbf{X}, \mathbf{Y} is invertible), so since ψ_{λ} and ϕ_{λ} are polynomials, $\psi_{\lambda}=\phi_{\lambda}$ everywhere. Thus $\chi_{\mathbf{X Y}}=\chi_{\mathbf{Y} \mathbf{X}}$ whenever \mathbf{X}, \mathbf{Y} are square.

Given $n>m$, we write

$$
\mathbf{X}_{n \times n}^{\prime}=\binom{\mathbf{X}_{m \times n}}{0_{(n-m) \times n}}, \mathbf{Y}_{n \times n}^{\prime}=\left(\begin{array}{ll}
\mathbf{Y}_{n \times m} & 0_{n \times(n-m)}
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \mathbf{X}^{\prime} \mathbf{Y}^{\prime}=\binom{\mathbf{X}}{0_{(n-m) \times n}}\left(\begin{array}{ll}
\mathbf{Y} & 0_{n \times(n-m)}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{X Y} & 0_{m \times(n-m)} \\
0_{(n-m) \times m} & 0_{(n-m) \times(n-m)}
\end{array}\right) \\
& \mathbf{Y}^{\prime} \mathbf{X}^{\prime}=\left(\begin{array}{ll}
\mathbf{Y} & 0_{n \times(n-m)}
\end{array}\right)\binom{\mathbf{X}}{0_{(n-m) \times n}}=\mathbf{Y X} \\
\Longrightarrow & \chi_{\mathbf{X}^{\prime} \mathbf{Y}^{\prime}}(\lambda)=\operatorname{det}\left(\begin{array}{cc}
\lambda_{m}-\mathbf{X Y} & 0_{m \times(n-m)} \\
0_{(n-m) \times m} & \lambda \mathbf{I}_{n-m}
\end{array}\right)=\lambda^{n-m} \chi_{\mathbf{X Y}}(\lambda)=\chi_{\mathbf{Y}^{\prime} \mathbf{X}^{\prime}}(\lambda)=\chi_{\mathbf{Y} \mathbf{X}}(\lambda) .
\end{aligned}
$$

We need one last lemma relating χ_{G} and $\chi_{L(G)}$.

Lemma 2.4. Let G be a graph with n vertices, ℓ edges, degree matrix \mathbf{D} and adjacency matrix \mathbf{A}. Then

$$
\chi_{L_{G}}(\lambda-2)=\lambda^{\ell-n} \operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{A}-\mathbf{D}\right)
$$

Proof. Note $\mathbf{A}\left(L_{G}\right)+2 \mathbf{I}_{\ell}=\mathbf{X}(G)^{\boldsymbol{\top}} \mathbf{X}(G)$. Indeed for $i \neq j, \mathbf{A}\left(L_{G}\right)_{i j}=1$ if and only if i and j are incident to the same vertex, which is precisely when the i-th and j-th columns of $\mathbf{X}(G)$ have a 1 at the same position. For $i=j$, the i-th column of $\mathbf{X}(G)$ always has precisely two 1 s , so $\left(\mathbf{X}(G)^{\top} \mathbf{X}(G)\right)_{i i}=2$. This implies

$$
\chi_{L_{G}}(\lambda-2)=\operatorname{det}\left(\lambda \mathbf{I}_{\ell}-2 \mathbf{I}_{\ell}-\mathbf{A}\left(L_{G}\right)\right)=\chi_{\mathbf{X}(G)^{\top} \mathbf{X}(G)}(\lambda)
$$

On the other hand $\mathbf{X}(G) \mathbf{X}(G)^{\boldsymbol{\top}}=\mathbf{A}+\mathbf{D}$. Indeed for $i \neq j, \mathbf{A}_{i j}=1$ if and only if i and j are incident to the same edge, which is when i is adjacent to j. If $i=j$ then $(\mathbf{X}(G) \mathbf{X}(G))_{i i}=\operatorname{deg}(i)=\mathbf{D}_{i i}$. The result then follows from 2.3:

$$
\chi_{L_{G}}(\lambda-2)=\chi_{\mathbf{x}(G)^{\top} \mathbf{X}(G)}(\lambda)=\lambda^{\ell-n} \chi_{\mathbf{x}(G) \mathbf{X}(G)^{\top}}(\lambda)=\lambda^{\ell-n} \chi_{\mathbf{A}+\mathbf{D}}(\lambda)=\lambda^{\ell-n} \operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{A}-\mathbf{D}\right) .
$$

Now we establish the main result between χ_{G} and $\chi_{\phi(G)}$.

Theorem 2.5. Let $G \in \mathcal{F}_{k}$ have n vertices and $\ell=n k / 2$ edges. Then

$$
\chi_{\phi(G)}(\lambda)=(\lambda(\lambda+2))^{\ell-n} \chi_{G}\left(\lambda^{2}+(2-k) \lambda-k\right) .
$$

Proof. Recall

$$
\mathbf{A}\left(D_{G}\right)=\left(\begin{array}{cc}
0_{\ell \times \ell} & \mathbf{X}(G)^{\boldsymbol{\top}} \\
\mathbf{X}(G) & 0_{n \times n}
\end{array}\right), \mathbf{D}\left(D_{G}\right)=\left(\begin{array}{cc}
2 \mathbf{I}_{\ell} & 0_{\ell \times n} \\
0_{n \times \ell} & k \mathbf{I}_{n}
\end{array}\right) .
$$

By 2.4

$$
\chi_{\phi(G)}(\lambda)=(\lambda+2)^{\ell-n} \operatorname{det}\left((\lambda+2) \mathbf{I}_{\ell+n}-\mathbf{A}\left(D_{G}\right)-\mathbf{D}\left(D_{G}\right)\right) .
$$

We note that if we write (using 2.1)

$$
\mathbf{A}\left(D_{G}\right)=\left(\begin{array}{cc}
0_{\ell \times \ell} & \mathbf{X}(G)^{\top} \\
\mathbf{X}(G) & 0_{n \times n}
\end{array}\right)
$$

then (recall Section 1: $\operatorname{deg}_{D_{G}}(v)=2$ if $v \in E(G), k$ if $\left.v \in V(G)\right)$

$$
\mathbf{D}\left(D_{G}\right)=\left(\begin{array}{cc}
2 \mathbf{I}_{\ell} & 0_{\ell \times n} \\
0_{n \times \ell} & k \mathbf{I}_{n}
\end{array}\right) .
$$

Then by 2.2

$$
\begin{aligned}
(\lambda+2) \mathbf{I}_{\ell+n}-\mathbf{A}\left(D_{G}\right)-\mathbf{D}\left(D_{G}\right) & =\left(\begin{array}{cc}
(\lambda+2-2) \mathbf{I}_{\ell} & -\mathbf{X}(G)^{\top} \\
-\mathbf{X}(G) & (\lambda+2-k) \mathbf{I}_{n}
\end{array}\right)=\left(\begin{array}{cc}
\lambda \mathbf{I}_{\ell} & -\mathbf{X}(G)^{\top} \\
-\mathbf{X}(G) & (\lambda-k+2) \mathbf{I}_{n}
\end{array}\right) \\
\Longrightarrow \operatorname{det}\left(\begin{array}{cc}
\lambda \mathbf{I}_{\ell} & -\mathbf{X}(G)^{\top} \\
-\mathbf{X}(G) & (\lambda-k+2) \mathbf{I}_{n}
\end{array}\right) & =\lambda^{\ell} \operatorname{det}\left((\lambda-k+2) \mathbf{I}_{n}-\lambda^{-1} \mathbf{X}(G) \mathbf{X}(G)^{\top}\right) \\
& =\lambda^{\ell-n} \operatorname{det}\left((\lambda(\lambda-k+2)-k) \mathbf{I}_{n}-\mathbf{A}(G)\right)=\lambda^{\ell-n} \chi_{G}(\lambda(\lambda-k+2)-k) \\
\Longrightarrow \chi_{\phi(G)}(\lambda) & =(\lambda(\lambda+2))^{\ell-n} \chi_{G}(\lambda(\lambda-k+2)-k) .
\end{aligned}
$$

Corollary 2.6. Let $G \in \mathcal{F}_{k}$ have n vertices and $\ell=n k / 2$ edges and let $f(\lambda)=\lambda^{2}+(2-k) \lambda-k$. Then

$$
\operatorname{Spec} \phi(G)=\{0\}^{(\ell-n)} \cup\{-2\}^{(\ell-n)} \cup f^{-1}(\operatorname{Spec} G)
$$

where $\operatorname{Spec} G$ and $\operatorname{Spec} \phi(G)$ are understood to be multisets (and $\{x\}^{(\ell-n)}$ denotes the multiset with x having multiplicity $\ell-n$).

Proof. Everything follows 2.5: if $\lambda=0$ or -2 then $\chi_{\phi(G)}(\lambda)=0$; If $\lambda \in f^{-1}(\operatorname{Spec} G)$ then $f(\lambda) \in \operatorname{Spec} G$ so $\chi_{G}(f(\lambda))=0$ so $\chi_{\phi(G)}(\lambda)=0$. The multiplicities follow from the multiplicity of λ as a root of $\chi_{\phi(G)}$.

3 Spectrum of a sequence of vertex replacement graphs

Kollár and Sarnak [4] found a set A such that for $G \in \mathcal{F}_{3}$, if $\operatorname{Spec} G \subseteq A$ then $\operatorname{Spec} \phi(G) \subseteq A$. This means that $[-3,3] \backslash A$ is guaranteed to be gapped by the spectrum of $\left\{\phi^{n}(G): n \geq 0\right\}$, if $\operatorname{Spec} G \subseteq A$. We will do the same for $G \in \mathcal{F}_{k}$.

We use the notation

$$
f(\lambda)=f_{k}(\lambda)=\lambda^{2}+(2-k) \lambda-k
$$

and

$$
\Gamma=\Gamma_{k}=\bigcap_{j=0}^{\infty} f_{k}^{-j}([-k, k])
$$

We are looking for a set $A=A_{k} \subseteq[-k, k]$ such that

$$
\begin{equation*}
\operatorname{Spec} G \subseteq A_{k} \Longrightarrow \operatorname{Spec} \phi(G)=f_{k}^{-1}(\operatorname{Spec} G) \cup\{0,2\} \subseteq A_{k} \tag{3.1}
\end{equation*}
$$

Note that if $f_{k}^{-j}\left(A_{k} \cup\{0,-2\}\right) \subseteq A_{k}, \forall j \geq 0$ then A_{k} would satisfy (3.1). We will proceed to show that $A_{k}=\Gamma_{k} \cup \bigcup_{j=0}^{\infty} f_{k}^{-j}(\{0\})$ has the desired property.

Lemma 3.1. Suppose $x \notin[-k, k]$. Then $f_{k}(x) \notin[-k, k]$. In consequence, $x \notin \Gamma_{k}$ and $f_{k}^{j}(x) \neq 0, \forall j \geq 0$.

Proof. Assume $x>k$ i.e. $x=k+\epsilon$. Then

$$
f_{k}(x)=(k+\epsilon)^{2}+(2-k)(k+\epsilon)-k=(k+\epsilon)(\epsilon+2)-k>(k+\epsilon)(\epsilon+2)-k-\epsilon=(k+\epsilon)(\epsilon+1)>k .
$$

Now assume $x<-k$ i.e. $x=-k-\epsilon$. Then (recall $k \geq 2$ so $2 k-3 \geq 1$)

$$
f_{k}(x)=(-k-\epsilon)^{2}+(k-2)(k+\epsilon)-k>(k+\epsilon)(k+\epsilon+k-2)-k-\epsilon=(k+\epsilon)(2 k+\epsilon-3)>k .
$$

Theorem 3.2. Fix $k \geq 2$. Let $A=\Gamma \cup \bigcup_{j=0}^{\infty} f^{-j}(\{0\})$. Then $f^{-j}(A \cup\{0,-2\}) \subseteq A \subseteq[-k, k], \forall j \geq 0$. In other words, A satisfies (3.1)

Proof. $\Gamma \subseteq[-k, k]$ and by $3.1 \bigcup_{j=0}^{\infty} f_{k}^{-j}(\{0\}) \subseteq[-k, k]$ so $A \subseteq[-k, k]$. Note

$$
f^{-j}(A \cup\{0,-2\})=f^{-j}(\Gamma \cup\{-2\}) \cup \bigcup_{i=0}^{\infty} f^{-(i+j)}(\{0\}), \forall j \geq 0
$$

Clearly $\bigcup_{i=0}^{\infty} f^{-(i+j)}(\{0\}) \subseteq A$ by definition. Furthermore, $f(-2)=(-2)^{2}+(2-k)(-2)-k=k$ and $f^{2}(-2)=f(k)=k^{2}+(2-k) k-k=k$ so $f^{j}(-2) \in[-k, k]$ for all $j \geq 0$ so $-2 \in f^{-j}([-k, k]), \forall j \geq 0$ i.e. $-2 \in \Gamma$ so $\Gamma \cup\{-2\}=\Gamma$. Thus we will be done if we can show that $f^{-j}(\Gamma) \subseteq \Gamma, \forall j \geq 0$.

Via induction this is equivalent to saying that $f^{-1}(\Gamma) \subseteq \Gamma$. If $x \in f^{-1}\left(\Gamma_{k}\right)$ then $f(x) \in \Gamma$ so by definition

$$
\forall j \geq 0: f(x) \in f^{-j}([-k, k]) \Longrightarrow x \in f^{-(j+1)}([-k, k])
$$

Now we only need $x \in f^{-0}([-k, k])=[-k, k]$, but this follows 3.1: $x \notin[-k, k] \Longrightarrow f(x) \notin \Gamma$. Thus we have shown $x \in \Gamma$.

What we showed is that suppose we are given $G \in \mathcal{F}_{k}$ such that $\operatorname{Spec} G \subseteq A_{k}$, then for the sequence $\left\{G_{j}=\phi^{j}(G): j \geq 0\right\}, \operatorname{Spec} G_{j} \subseteq A_{k}, \forall j \geq 0$.

A natural question now is the following: which points are known to be in A_{k} ?

Proposition 3.3. Fix $k \geq 2$. Then $\bigcup_{j=0}^{\infty} f^{-j}(\{-1,0, k\}) \subseteq A$.

Proof. $\bigcup_{j=0}^{\infty} f^{-j}(\{0\}) \subseteq A$ is by definition. Note $f(-1)=1-2+k-k=-1$ and (recall) $f(k)=k$. Thus for any x, if there exists $j \geq 0$ such that $f^{j}(x) \in\{-1, k\}$, then $f^{i+j}(x) \in\{-1, k\}$ for all $i \geq 0$ and furthermore $f^{i}(x) \in[-k, k]$ for all $i=0, \ldots, j$ by 3.1. This means $x \in \Gamma \subseteq A$.

We now show some examples where (3.1) can be applied via 3.3. The graphs used in the following examples were investigated in Biggs [1].

Example 3.4. We know (this can be shown by the fact that $\mathbf{A}\left(K_{k+1}\right)$ is circulant)

$$
\text { Spec } K_{k+1}=\{k\}^{(1)} \cup\{-1\}^{(k)}
$$

So let $G=K_{k+1}$. Then $\left\{G_{j}=\phi^{j}(G): j \geq 0\right\}$ has $\operatorname{Spec} G_{j} \subseteq A_{k}, \forall j \geq 0$.

Example 3.5. Define H_{s} to be the graph on $2 s$ vertices obtained by removing s disjoint edges (i.e. a perfect matching) from $K_{2 s} . H_{s}$ is called a hyperoctahedral graph and H_{3} is the octahedral graph. Note $H_{s} \in \mathcal{F}_{2(s-1)}$. Again via the fact that $\mathbf{A}\left(H_{s}\right)$ is circulant, we know

$$
\text { Spec } H_{s}=\{2(s-1)\}^{(1)}\{0\}^{(s)}\{-2\}^{(s-1)}
$$

Recall $-2 \in f_{k}^{-1}(\{k\})$ for any $k \geq 2$. Thus for $s \geq 2$, if we let $G=H_{s}$ then $\left\{G_{j}=\phi^{j}(G): j \geq 0\right\}$ has $\operatorname{Spec} G_{j} \subseteq A_{2(s-1)}, \forall j \geq 0$.

References

[1] Norman Biggs. Regular graphs and line graphs. Cambridge Mathematical Library. Cambridge University Press, 2nd edition, 1974.
[2] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application. Pure and applied mathematics : a series of monographs and textbooks. Academic Press, 1980.
[3] Alicia J. Kollár, Mattias Fitzpatrick, Peter Sarnak, and Andrew A. Houck. Line-graph lattices: Euclidean and non-euclidean flat bands, and implementations in circuit quantum electrodynamics. Communications in Mathematical Physics, 376(3):1909-1956, Dec 2019.
[4] Alicia J. Kollár and Peter Sarnak. Gap sets for the spectra of cubic graphs, 2021.

[^0]: ${ }^{1}$ Department of Mathematics and Statistics, McGill University

