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Abstract

Kollár and Sarnak [4] have investigated the spectral set of sequences of 3-regular graphs, using in
particular the map from a graph to the line graph of its subdivision (so-called vertex replacement map
in this note). We generalize this map and some results of the paper to k-regular graphs.
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their help and advice.

1 The vertex replacement map

Let Fk be the set of k-regular (simple, undirected) graphs (k ≥ 2 across this section). For a given k we will
define a map from Fk onto itself that will help us generate k-regular graphs, via vertex replacement. This
map has been investigated by Kollár and Sarnak in [3] and [4] for 3-regular graphs.

Definition 1.1. Let G be a graph. D(G) = DG (called the subdivision graph of G) is defined to be the
graph created from subdividing every edge in E(G). Formally, V (DG) = E(G)∪V (G) and E(DG) = {(e, v) :
e ∈ E(G), v ∈ V (G), e incident to v}.

Remark. For x ∈ V (DG), if x ∈ V (G) then degDG
(x) = degG(x) and if x ∈ E(G) then degG(x) = 2.

Definition 1.2. Let G be a graph. L(G) = LG the line graph of G is defined where V (LG) = E(G) and
(e, f) ∈ E(LG) if and only if e, f are incident to the same vertex in G.

Lemma 1.3. For each v ∈ V (G), if it is incident to e1, . . . , ed ∈ E(G), then we can identify it with Hv ⊆ LG,
where V (Hv) is the induced subgraph of {e1, . . . , ed}, Hv is isomorphic to Kd and Hv ∩Hu 6= ∅ if and only
if (u, v) ∈ E(G), in which case Hv ∩Hu = {(u, v)}.

Proof. Hv is isomorphic to Kd since every e, f ∈ V (Hv) are neighbours (they are all incident to v). The
intersection property follows V (Hv ∩Hu) = V (Hv) ∩ V (Hu).
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Lemma 1.4. For e = (v, u) ∈ V (LG) (where v, u ∈ V (G) were neighbours in G), degLG
(e) = degG(v) +

degG(u)− 2.

Proof. e is only neighbours with f ∈ E(G) where f 6= e incident to v or to u, and there are degG(v) +
degG(u)− 2 of those.

Proposition 1.5. Let G ∈ Fk be k-regular.

φ : Fk → Fk, G 7→ L(D(G))

is a mapping where every v ∈ V (G) can be identified to Hv ⊆ φ(G) whose vertex set are edges incident to v
in G. Hv is isomorphic to Kk and Hv is joined by an edge to Hu if and only if (u, v) ∈ E(G).

Remark. φ indeed maps into Fk by 1.4, since every e ∈ E(DG) joins a vertex of degree k (from V (G)) and
one of degree 2 (from E(G) ⊆ V (DG)). So e ∈ V (φ(G)) would have degree k + 2 − 2 = k. We call φ the
vertex replacement map.

Proof. Since V (G) ⊆ V (D(G)) and the degrees stay unchanged, we use Hv from 1.3 to get that they are
isomorphic to Kk and that they share a vertex with each of He, where e ∈ E(G) was added by the subdivisions
and e is incident to v and some u neighbour of v. But this means He also shares a vertex with Hu (and
Hu ∩Hv = ∅ since u, v ∈ V (G) can never be neighbours in DG), which means Hv shares an edge with Hu.

By the degree of every x ∈ V (Hv), since they have k− 1 degrees inside Hv, they must have precisely one
degree out of Hv, hence the only if.

2 The spectral properties of the vertex replacement map

In this section, we establish a relationship between SpecG and Specφ(G), via the characteristic polynomials
of G and φ(G) (the characteristic polynomial of G is defined to be χG = χA(G), where A(G) is the adjacency
matrix of G). The algebraic graph theory results of this section are due to Cvetković et al. [2].

We start with a representation of the adjacency matrix of DG.

Lemma 2.1. Let G have n vertices and ` edges. Let Xn×` = X(G) be the undirected incidence matrix of G
(Xve = 1 if and only if e incident to v). Then we can write

A(DG) =

(
0`×` X(G)ᵀ

X(G) 0n×n

)
.

Proof. The first ` rows and columns of A(DG) represent E(G) and the following n represent V (G). Aij = 0
if i, j ∈ V (G) or i, j ∈ E(G) and Aij = 1 if and only if X(G)ij = 1 (if i ∈ V (G) and j ∈ E(G)) or X(G)ji = 1
(if i ∈ E(G) and j ∈ V (G)).

Now we state and prove two well-known results in matrix theory.
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Lemma 2.2. If M is invertible and T is square,

det

(
M X
Y T

)
= det M det(T−YM−1X).

Proof. Note (assume M`×` and Tn×n)(
M−1 0`×n
0n×` In

)(
I` −X

0n×` In

)
=

(
M−1 −M−1X
0n×` In

)
is precisely the product of column operations that eliminate M and X. Then(

M X
Y T

)(
M−1 −M−1X
0n×` In

)
=

(
I` 0`×n

YM−1 T−YM−1X

)
=⇒ det

(
M X
Y T

)
(det M)−1 = det(T−YM−1X).

Lemma 2.3. If Xm×n, Yn×m are matrices and χA denotes the characteristic polynomial of a square matrix
A, then

λnχXY(λ) = λmχYX(λ).

Proof. We start by the case where X,Y are n× n, and X is invertible. Then

X(YX)X−1 = XY =⇒ det(λIn −XY) = det(X(λIn −YX)X−1) = det(λIn −YX).

For arbitrary X,Y ∈ Rn2

, given fixed λ ∈ R, if we consider

ψλ : Rn
2

× Rn
2

→ R, (X,Y) 7→ χXY(λ); φλ : Rn
2

× Rn
2

→ R, (X,Y) 7→ χYX(λ)

then ψλ = φλ infinitely often (wherever one of X,Y is invertible), so since ψλ and φλ are polynomials,
ψλ = φλ everywhere. Thus χXY = χYX whenever X,Y are square.

Given n > m, we write

X′n×n =

(
Xm×n

0(n−m)×n

)
,Y′n×n =

(
Yn×m 0n×(n−m)

)
.

Then

X′Y′ =

(
X

0(n−m)×n

)(
Y 0n×(n−m)

)
=

(
XY 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

)
;

Y′X′ =
(
Y 0n×(n−m)

)( X
0(n−m)×n

)
= YX

=⇒ χX′Y′(λ) = det

(
λIm −XY 0m×(n−m)

0(n−m)×m λIn−m

)
= λn−mχXY(λ) = χY′X′(λ) = χYX(λ).

We need one last lemma relating χG and χL(G).
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Lemma 2.4. Let G be a graph with n vertices, ` edges, degree matrix D and adjacency matrix A. Then

χLG
(λ− 2) = λ`−n det(λIn −A−D).

Proof. Note A(LG) + 2I` = X(G)ᵀX(G). Indeed for i 6= j, A(LG)ij = 1 if and only if i and j are incident to
the same vertex, which is precisely when the i-th and j-th columns of X(G) have a 1 at the same position.
For i = j , the i-th column of X(G) always has precisely two 1s, so (X(G)ᵀX(G))ii = 2. This implies

χLG
(λ− 2) = det(λI` − 2I` −A(LG)) = χX(G)ᵀX(G)(λ).

On the other hand X(G)X(G)ᵀ = A + D. Indeed for i 6= j, Aij = 1 if and only if i and j are incident to the
same edge, which is when i is adjacent to j. If i = j then (X(G)X(G))ii = deg(i) = Dii. The result then
follows from 2.3:

χLG
(λ− 2) = χX(G)ᵀX(G)(λ) = λ`−nχX(G)X(G)ᵀ(λ) = λ`−nχA+D(λ) = λ`−n det(λIn −A−D).

Now we establish the main result between χG and χφ(G).

Theorem 2.5. Let G ∈ Fk have n vertices and ` = nk/2 edges. Then

χφ(G)(λ) = (λ(λ+ 2))`−nχG(λ2 + (2− k)λ− k).

Proof. Recall

A(DG) =

(
0`×` X(G)ᵀ

X(G) 0n×n

)
, D(DG) =

(
2I` 0`×n

0n×` kIn

)
.

By 2.4
χφ(G)(λ) = (λ+ 2)`−n det((λ+ 2)I`+n −A(DG)−D(DG)).

We note that if we write (using 2.1)

A(DG) =

(
0`×` X(G)ᵀ

X(G) 0n×n

)
,

then (recall Section 1: degDG
(v) = 2 if v ∈ E(G), k if v ∈ V (G))

D(DG) =

(
2I` 0`×n

0n×` kIn

)
.

Then by 2.2

(λ+ 2)I`+n −A(DG)−D(DG) =

(
(λ+ 2− 2)I` −X(G)ᵀ

−X(G) (λ+ 2− k)In

)
=

(
λI` −X(G)ᵀ

−X(G) (λ− k + 2)In

)
=⇒ det

(
λI` −X(G)ᵀ

−X(G) (λ− k + 2)In

)
= λ` det((λ− k + 2)In − λ−1X(G)X(G)ᵀ)

= λ`−n det((λ(λ− k + 2)− k)In −A(G)) = λ`−nχG(λ(λ− k + 2)− k)

=⇒ χφ(G)(λ) = (λ(λ+ 2))`−nχG(λ(λ− k + 2)− k).
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Corollary 2.6. Let G ∈ Fk have n vertices and ` = nk/2 edges and let f(λ) = λ2 + (2− k)λ− k. Then

Specφ(G) = {0}(`−n) ∪ {−2}(`−n) ∪ f−1(SpecG).

where SpecG and Specφ(G) are understood to be multisets (and {x}(`−n) denotes the multiset with x having
multiplicity `− n) .

Proof. Everything follows 2.5: if λ = 0 or −2 then χφ(G)(λ) = 0; If λ ∈ f−1(SpecG) then f(λ) ∈ SpecG so
χG(f(λ)) = 0 so χφ(G)(λ) = 0. The multiplicities follow from the multiplicity of λ as a root of χφ(G).

3 Spectrum of a sequence of vertex replacement graphs

Kollár and Sarnak [4] found a set A such that for G ∈ F3, if SpecG ⊆ A then Specφ(G) ⊆ A. This means
that [−3, 3] \ A is guaranteed to be gapped by the spectrum of {φn(G) : n ≥ 0}, if SpecG ⊆ A. We will do
the same for G ∈ Fk.

We use the notation
f(λ) = fk(λ) = λ2 + (2− k)λ− k

and

Γ = Γk =

∞⋂
j=0

f−jk ([−k, k]).

We are looking for a set A = Ak ⊆ [−k, k] such that

SpecG ⊆ Ak =⇒ Specφ(G) = f−1k (SpecG) ∪ {0, 2} ⊆ Ak. (3.1)

Note that if f−jk (Ak ∪ {0,−2}) ⊆ Ak, ∀j ≥ 0 then Ak would satisfy (3.1). We will proceed to show that

Ak = Γk ∪
⋃∞
j=0 f

−j
k ({0}) has the desired property.

Lemma 3.1. Suppose x /∈ [−k, k]. Then fk(x) /∈ [−k, k]. In consequence, x /∈ Γk and f jk(x) 6= 0, ∀j ≥ 0.

Proof. Assume x > k i.e. x = k + ε. Then

fk(x) = (k + ε)2 + (2− k)(k + ε)− k = (k + ε)(ε+ 2)− k > (k + ε)(ε+ 2)− k − ε = (k + ε)(ε+ 1) > k.

Now assume x < −k i.e. x = −k − ε. Then (recall k ≥ 2 so 2k − 3 ≥ 1)

fk(x) = (−k − ε)2 + (k − 2)(k + ε)− k > (k + ε)(k + ε+ k − 2)− k − ε = (k + ε)(2k + ε− 3) > k.

Theorem 3.2. Fix k ≥ 2. Let A = Γ ∪
⋃∞
j=0 f

−j({0}). Then f−j(A ∪ {0,−2}) ⊆ A ⊆ [−k, k], ∀j ≥ 0. In
other words, A satisfies (3.1)

Proof. Γ ⊆ [−k, k] and by 3.1
⋃∞
j=0 f

−j
k ({0}) ⊆ [−k, k] so A ⊆ [−k, k]. Note

f−j(A ∪ {0,−2}) = f−j(Γ ∪ {−2}) ∪
∞⋃
i=0

f−(i+j)({0}), ∀j ≥ 0.
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Clearly
⋃∞
i=0 f

−(i+j)({0}) ⊆ A by definition. Furthermore, f(−2) = (−2)2 + (2 − k)(−2) − k = k and
f2(−2) = f(k) = k2 + (2 − k)k − k = k so f j(−2) ∈ [−k, k] for all j ≥ 0 so −2 ∈ f−j([−k, k]), ∀j ≥ 0
i.e. −2 ∈ Γ so Γ ∪ {−2} = Γ. Thus we will be done if we can show that f−j(Γ) ⊆ Γ, ∀j ≥ 0.

Via induction this is equivalent to saying that f−1(Γ) ⊆ Γ. If x ∈ f−1(Γk) then f(x) ∈ Γ so by definition

∀j ≥ 0 : f(x) ∈ f−j([−k, k]) =⇒ x ∈ f−(j+1)([−k, k])

Now we only need x ∈ f−0([−k, k]) = [−k, k], but this follows 3.1: x /∈ [−k, k] =⇒ f(x) /∈ Γ. Thus we have
shown x ∈ Γ.

What we showed is that suppose we are given G ∈ Fk such that SpecG ⊆ Ak, then for the sequence
{Gj = φj(G) : j ≥ 0}, SpecGj ⊆ Ak, ∀j ≥ 0.

A natural question now is the following: which points are known to be in Ak?

Proposition 3.3. Fix k ≥ 2. Then
⋃∞
j=0 f

−j({−1, 0, k}) ⊆ A.

Proof.
⋃∞
j=0 f

−j({0}) ⊆ A is by definition. Note f(−1) = 1− 2 +k−k = −1 and (recall) f(k) = k. Thus for

any x, if there exists j ≥ 0 such that f j(x) ∈ {−1, k}, then f i+j(x) ∈ {−1, k} for all i ≥ 0 and furthermore
f i(x) ∈ [−k, k] for all i = 0, . . . , j by 3.1. This means x ∈ Γ ⊆ A.

We now show some examples where (3.1) can be applied via 3.3. The graphs used in the following
examples were investigated in Biggs [1].

Example 3.4. We know (this can be shown by the fact that A(Kk+1) is circulant)

SpecKk+1 = {k}(1) ∪ {−1}(k).

So let G = Kk+1. Then {Gj = φj(G) : j ≥ 0} has SpecGj ⊆ Ak, ∀j ≥ 0.

Example 3.5. Define Hs to be the graph on 2s vertices obtained by removing s disjoint edges (i.e. a perfect
matching) from K2s. Hs is called a hyperoctahedral graph and H3 is the octahedral graph. Note Hs ∈ F2(s−1).
Again via the fact that A(Hs) is circulant, we know

SpecHs = {2(s− 1)}(1){0}(s){−2}(s−1).

Recall −2 ∈ f−1k ({k}) for any k ≥ 2. Thus for s ≥ 2, if we let G = Hs then {Gj = φj(G) : j ≥ 0} has
SpecGj ⊆ A2(s−1), ∀j ≥ 0.
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