Note on the spectra of some sequences of regular graphs

Dao Chen Yuan
Fall 2021

Abstract

Kolldr and Sarnak [41] have investigated the spectral set of sequences of 3-regular graphs, using in
particular the map from a graph to the line graph of its subdivision (so-called vertex replacement map
in this note). We generalize this map and some results of the paper to k-regular graphs.
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their help and advice.

1 The vertex replacement map

Let Fy, be the set of k-regular (simple, undirected) graphs (k > 2 across this section). For a given k we will
define a map from Fj onto itself that will help us generate k-regular graphs, via vertex replacement. This
map has been investigated by Kollar and Sarnak in [3] and [1] for 3-regular graphs.

Definition 1.1. Let G be a graph. D(G) = D¢ (called the subdivision graph of G) is defined to be the
graph created from subdividing every edge in E(G). Formally, V(D¢g) = E(G)UV(G) and E(Dg) = {(e,v) :
e € E(G),v € V(G), e incident to v}.

Remark. For x € V(Dg), if x € V(G) then degp, (z) = degg(x) and if x € E(G) then degg(z) = 2.

Definition 1.2. Let G be a graph. L(G) = L¢g the line graph of G is defined where V(Lg) = E(G) and
(e, f) € E(Lg) if and only if e, f are incident to the same vertex in G.

1.3. For each v € V(G), if it is incident to ey, . . .,eq € E(G), then we can identify it with H, C L,
where V (H,) is the induced subgraph of {e1,...,eq}, H, is isomorphic to K4 and H, N H, # & if and only
if (u,v) € E(G), in which case H, N H, = {(u,v)}.

Proof. H, is isomorphic to K, since every e, f € V(H,) are neighbours (they are all incident to v). The
intersection property follows V(H, N H,) = V(H,) NV (H,). O
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1.4. For e = (v,u) € V(Lg) (where v,u € V(G) were neighbours in G), degy . (e) = degg(v) +
degq(u) — 2.

Proof. e is only neighbours with f € E(G) where f # e incident to v or to u, and there are degq(v) +
degq(u) — 2 of those. O

Proposition 1.5. Let G € F, be k-regular.
d) Fe — fk, G L(D(G))

is a mapping where every v € V(G) can be identified to H, C ¢(G) whose vertex set are edges incident to v
in G. H, is isomorphic to Ky, and H, is joined by an edge to H, if and only if (u,v) € E(G).

Remark. ¢ indeed maps into Fj, by 1.4, since every e € E(Dg) joins a vertex of degree k (from V(G)) and
one of degree 2 (from E(G) C V(Dg)). So e € V(¢(G)) would have degree k +2 — 2 = k. We call ¢ the
vertex replacement map.

Proof. Since V(G) C V(D(G)) and the degrees stay unchanged, we use H, from 1.3 to get that they are
isomorphic to K}, and that they share a vertex with each of H,, where e € F(G) was added by the subdivisions
and e is incident to v and some u neighbour of v. But this means H, also shares a vertex with H, (and
H,NH, = @ since u,v € V(G) can never be neighbours in D¢ ), which means H,, shares an edge with H,.

By the degree of every « € V(H,), since they have k — 1 degrees inside H,, they must have precisely one
degree out of H,, hence the only if. O

2 The spectral properties of the vertex replacement map

In this section, we establish a relationship between Spec G and Spec ¢(G), via the characteristic polynomials
of G and ¢(G) (the characteristic polynomial of G is defined to be x¢ = XA (), where A(G) is the adjacency
matrix of G). The algebraic graph theory results of this section are due to Cvetkovié et al. [2].

We start with a representation of the adjacency matrix of Dg.

2.1. Let G have n vertices and £ edges. Let X, x¢ = X(G) be the undirected incidence matriz of G
(Xye =1 if and only if e incident to v). Then we can write

A(Dg) = (;ge(ﬁ) )S(G)> '

Proof. The first £ rows and columns of A(D¢) represent E(G) and the following n represent V(G). A;; =0
ifi,j e V(G)ori,j € E(G) and A;; = 1if and only if X(G),;; =1 (if i € V(G) and j € E(G)) or X(G),; =1
(if i € E(G) and j € V(G)). 0

Now we state and prove two well-known results in matrix theory.



2.2. If M is invertible and T is square,

M X _
det (Y T> = det M det(T — YM'X).

Proof. Note (assume My and Ty xr)

M~ 0p) (I -X\ (M~ —-MIX
On><£ In On><£ In N Onxf In

is precisely the product of column operations that eliminate M and X. Then

M X\ /M! -M X\ [ I Orsen
Y T/ \ 0 I, “\YM! T-YM X

M X) (det M)™! = det(T — YMX). O

= det <Y T

2.3. If Xinxn, Yaxm are matrices and xa denotes the characteristic polynomial of a square matriz
A, then
A'xxy (A) = A" xyx (A).

Proof. We start by the case where X, Y are n x n, and X is invertible. Then
X(YX)X™' =XY = det(A\,, — XY) = det(X(A\I, — YX)X 1) = det(A\I,, — YX).
For arbitrary X,Y € ]R”z, given fixed A € R, if we consider
Uy R X R SR (X,Y) = xxy(A); éa i R™ x R™ SR, (X,Y) = yyx ()

then 1) = ¢, infinitely often (wherever one of XY is invertible), so since 1, and ¢, are polynomials,
Y = ¢ everywhere. Thus xxy = xyx whenever X, Y are square.
Given n > m, we write

Xm n
X;zxn = < " > aY;an = (Ynxm Onx(n—m)) .

O(nfm) xXn
Then

X XY O (n—m
XY' = < ) (Y Onx(n—m)) = (O( X ) ) ;

O(nfm)xn n—m)xXm O(nfm)x(nfm)
X

O(n—m) Xn

Y'X' = (Y Onx(n—m)) ( ) =YX
)\Im - XY Om n—m —m
— yxryr(A) = det ( 1 )) = A"xxy (A) = xyx (M) = xyx (V) -
n—m

O(n—m) Xm

We need one last lemma relating x¢ and xp(q)-



2.4. Let G be a graph with n vertices, { edges, degree matriz D and adjacency matriz A. Then

Xio (A —2) = A" det (AT, — A — D).

Proof. Note A(L¢g)+2I, = X(G)TX(G). Indeed for ¢ # j, A(Lg);; =1 if and only if ¢ and j are incident to
the same vertex, which is precisely when the i-th and j-th columns of X(G) have a 1 at the same position.
For i = j , the i-th column of X(G) always has precisely two 1s, so (X(G)TX(G));; = 2. This implies

XL (A —2) = det(\L, — 21, — A(Lg)) = xx(a)rx(a)(A)-

On the other hand X(G)X(G)T = A+ D. Indeed for i # j, A;; = 1 if and only if i and j are incident to the
same edge, which is when ¢ is adjacent to j. If i = j then (X(G)X(G)):; = deg(i) = D;;. The result then
follows from 2.3:

XLe(A—2) = xx(@)yrx@A) = X "xx(@)x@)r(A) = A7 "xarp(\) = A" det(\I, —A—-D). O
Now we establish the main result between x¢ and x¢(q)-
Theorem 2.5. Let G € Fj, have n vertices and { = nk/2 edges. Then

Xo(a)(N) = A +2) " xa(A + (2= k)X — k).

Proof. Recall
_( Oexe X(G)T (2L, Opxn
A(DG) - <X(G) 0n><n ’ D(DG) - Onxe kIn .

Xo(c)(A) = (A +2)" det(A+ 2)Tegn — A(Da) = D(Dg))-
We note that if we write (using 2.1)

By 2.4

Ao = (3o 0,

then (recall Section 1: degp . (v) =2 if v € E(G), kif v € V(G))

21 0
e = (o, i)

Then by 2.2

(M —X(G)T
- (—X(G) A—k+ 2)1,)

1 > = Mdet((A — k +2)I, — A\ ' X(G)X(G)T)

(A+ 2o — A(Dg) = D(Dg) = (Q ti(_c?h (A fg(f E)h)

AL ~X(G)T

= det <—X(G) (A—k+2)
= N7 det(AA =k +2) = B)L, — A(G)) = X "xa(AA =k +2) — k)

= Xo(&)(N) = AA+2)) " xa(AA —k +2) — k).

O



Corollary 2.6. Let G € Fy have n vertices and { = nk/2 edges and let f(\) = X2 + (2 — k)X — k. Then
Spec ¢(G) = {0} U {=2}") U f~(Spec G).
where Spec G and Spec ¢(G) are understood to be multisets (and {x}“~™) denotes the multiset with x having

multiplicity £ —n) .

Proof. Everything follows 2.5: if A = 0 or —2 then x4(g)(A) = 0; If A € f~1(SpecG) then f(\) € SpecG so
xa(f(A) = 050 x4 (A) = 0. The multiplicities follow from the multiplicity of A as a root of x4(q)- O

3 Spectrum of a sequence of vertex replacement graphs

Kolldr and Sarnak [1] found a set A such that for G € Fj, if Spec G C A then Spec ¢(G) C A. This means
that [—3,3] \ A is guaranteed to be gapped by the spectrum of {¢"(G) : n > 0}, if SpecG C A. We will do
the same for G € Fp.

We use the notation

FA)=HA)=X+2-kA—k
and

I=Ty=()fi ([=k k).

§=0
We are looking for a set A = Ay, C [—k, k] such that

SpecG C Ay == Spec¢(G) = f, ' (Spec G) U {0,2} C Ay. (3.1)
Note that if f; 7 (A U {0,-2}) C Ay, Vj > 0 then Ay would satisfy (3.1). We will proceed to show that
Ay =T UUjZ, fi 7 ({0}) has the desired property.

3.1. Suppose x ¢ [—k,k]. Then fi(z) ¢ [—k,k|. In consequence, x ¢ Ty, and f,z(:r) #0,Vj>0.

Proof. Assume x > k i.e. x = k+ €. Then
fr@)=(k+e >+ Q2 -k (k+te)—k=(k+te)(e+2)—k>(k+e)et+2) —k—e=(k+e)(et+1) >k
Now assume x < —k i.e. = —k — e. Then (recall k > 2 s0 2k —3 > 1)
fr@)=(-k—e?+k-2)k+te)—k>(k+te)k+tet+tk—2)—k—e=(k+e)2k+e—3)>k O
Theorem 3.2. Fizk > 2. Let A=TU U;io f79({0}). Then f7(AU{0,-2}) C A C [k, k],Vj>0. In
other words, A satisfies (3.1)
Proof. T' C [k, k] and by 3.1 USZ, f, 7 ({0}) C [k, k] so A C [k, k]. Note

FAU{0,-2}) = F7@u{-2nulJ (o}, vi = 0.

=0



Clearly U;2, f~09({0}) C A by definition. Furthermore, f(—2) = (-2)? + (2 — k)(-2) — k = k and
f2(=2)=f(k) =k*+ (2 —kk—k =k so fi(=2) € [~k,k] for all j > 0s0o -2 € f7I([~k,k]),Vj >0
ie. =2 €T so 'U{-2} =T. Thus we will be done if we can show that f=/(I') C T, Vj > 0.

Via induction this is equivalent to saying that f~1(I') CT. If z € f~1(T'y) then f(x) € I so by definition

Vi>0: f(z) € fI([~k k) = xe UMD ([~k,k])

Now we only need = € f~9([—k, k]) = [k, k], but this follows 3.1: ¢ [k, k] = f(z) ¢ T'. Thus we have
shown x € T". 0

What we showed is that suppose we are given G € Fj such that SpecG C Ay, then for the sequence
{G; =¢(G) : j >0}, SpecG; C Ag, Vj > 0.
A natural question now is the following: which points are known to be in Ay?

Proposition 3.3. Fiz k > 2. Then |J;2, f/({-1,0,k}) C A.

Proof. |J;2, f7({0}) € A'is by definition. Note f(—1) = 1—2+k—k = —1 and (vecall) f(k) = k. Thus for
any z, if there exists j > 0 such that f7(z) € {—1,k}, then fi™7(z) € {—1,k} for all i > 0 and furthermore
fi(x) € [k, k] for all i = 0,...,5 by 3.1. This means z € I' C A. O

We now show some examples where (3.1) can be applied via 3.3. The graphs used in the following
examples were investigated in Biggs [1].
Example 3.4. We know (this can be shown by the fact that A(Kyy1) is circulant)
Spec K41 = {k}D U {-1}®).

So let G = Kj41. Then {G; = ¢?(G) : j > 0} has Spec G; C Ay, Vj > 0.

Example 3.5. Define H; to be the graph on 2s vertices obtained by removing s disjoint edges (i.e. a perfect
matching) from Ky,. H, is called a hyperoctahedral graph and Hj is the octahedral graph. Note Hy € Fo(s—1).
Again via the fact that A(H,) is circulant, we know

Spec Hs = {2(s — 1)}(1){0}@){_2}(5—1)‘

Recall —2 € f, '({k}) for any k > 2. Thus for s > 2, if we let G = H, then {G; = ¢/(G) : j > 0} has
Spec Gj - AQ(S_l), V] > 0.
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